Can Child Be Affected by Mother’s Malaria

QUESTION
If the baby’s mother has malaria, can it affect the child?

ANSWER

If the mother is pregnant when she gets malaria, particularly if it is her first pregnancy and particularly if she has never had malaria before, the effects on both the mother and child can be very serious. For the mother, this is because her immune system changes when she gets pregnant. This leaves her more vulnerable to the effects of malaria, including anaemia.

The most dangerous type of malaria, P. falciparum, also seems very able to infect cells in the placenta, leading to a higher intensity infection, and also reducing oxygen delivery to the baby. This, combined with the mother’s illness and anaemia, can lead to low birth weight, anaemia and other complications in the child once it is born. Malaria can also pass through the placenta, or be transferred to the baby through blood during childbirth, resulting in “congenital malaria”; that is, malaria which has been passed from mother to infant. Since newborns have inexperienced immune systems, malaria in the first days or weeks of life, and especially if the child is already low birth weight, can be very dangerous.

As such, a lot of effort has gone to finding ways to prevent malaria in pregnancy and to treat women who do get malaria while pregnant to prevent negative effects both to her and her unborn child. These efforts mainly involve the distribution of long-lasting insecticide treated bednets, and in some places also include the administration of intermittent preventive therapy, where women are given periodic doses of anti-malarials during pregnancy to protect against the disease.

Pathophysiology of Malaria

QUESTION

What is the pathophysiology of malaria?

ANSWER

Malaria causes disease through a number of pathways, which depend to a certain extent on the speciesMalaria is caused by a single-celled parasite of the genus Plasmodium; there are five species which infect humans, beingPlasmodium falciparumP. vivaxP. ovale, P. malariae and P. knowlesi.

All these species are introduced into the human blood stream through the bite of an infected mosquito; the life stage of malaria at this point is called a “sporozoite”, and they pass first to the liver, where they undergo an initial stage of replication (called “exo-erythrocytic replication”), before passing back into the blood and invading red blood cells (called “erythrocytes”, hence this is the “erythrocytic” part of the cycle). The malaria parasites that invade red blood cells are known as merozoites, and within the cell they replicate again, bursting out once they have completed a set number of divisions. It is this periodic rupturing of the red blood cells that causes most of the symptoms associated with malaria, as the host’s immune system responds to the waste products produced by the malaria parasites and the debris from the destroyed red blood cells. Different species of malaria rupture the red blood cells at different intervals, which leads to the diagnostic cycles of fever which characterise malaria; P. vivax, for example, tends to produce cycles of fever every two days, whereas P. malaria produces fever every three.

In addition, Plasmodium falciparum produces unique pathological effects, due to its manipulation of the host’s physiology. When it infects red blood cells, it makes them stick to the walls of tiny blood vessels deep within major organs, such as the kidneys, lungs, heart and brain. This is called “sequestration”, and results in reduced blood flow to these organs, causing the severe clinical symptoms associated with this infection, such as cerebral malaria.

More details on the exact biochemical mechanisms for sequestration and its effect on the pathology of the infection can be found on the Tulane University website.

What Causes Malaria

QUESTION

What are the causes of malaria?

ANSWER

Malaria is caused  by infection with certain single-celled parasites of the genus Plasmodium. Specifically, there are five species which infect humans: P. falciparum (the most severe and dangerous form of malaria), P. vivax, P. ovale, P. malariae and P. knowlesi.

The symptoms of the disease occur when the parasite enters the blood stream (after a brief 1-3 week period of development in the liver) and begins to enter red blood cells, reproduce inside them, and then burst out, destroying the cell. The debris caused by this bursting, as well as various other aspects of the process, cause the body to mount an intense immune reaction which results in high fever, chills, aches and nausea. For P. falciparum infection, the infection is particularly severe because the parasite causes red blood cells it infects to stick inside the small blood vessels that lead to major organs, reducing blood flow and causing oxygen deprivation. When this occurs in the blood vessels in the brain, the result is impaired consciousness, unconsciousness, coma and even death – hallmarks of what is known as “cerebral malaria,” which is implicated in many of the deaths related to malaria each year.

Number of Species of Malaria

QUESTION

I recently read an ISOS world malaria day poster saying 5 species of plasmodium cause malaria. I think that is confusing as we always talked about 4, ovale, vivax, falciparum and malaria….are they referring to the way we now split ovale into 2 sub species? or is this a typo on their part?

ANSWER

That is a really interesting question, and a good observation on your part! I imagine the fifth species they are referring to is Plasmodium knowlesi, which is found in parts of south-east Asia, with the majority of cases being reported from Borneo. Originally known only from macaque monkeys, it appears to be occurring more frequently in humans. However, it is not known whether this is a new host switch, or whether it is simply a matter of better detection methods—the morphology of P. knowlesi closely resembles that of P. falciparum in its early trophozoite stages, and P. malariae in later trophozoite and other life stage forms. Moreover, some molecular-based tests for P. knowlesi cross-react with other forms of malaria, such as P. vivax, leading to greater diagnostic confusion.

There is also a hypothesis that changes in land use in tropical forests may be resulting in greater human exposure to the vectors which carry P. knowlesi, which accounts for its increased recent prevalence in humans. P. knowlesi is the only known malaria in humans (and indeed, in all primates) with a 24-hour reproductive cycle, which means that without treatment, high levels of parasitaemia can accumulate rapidly in the blood, and lead to severe clinical symptoms. This makes its apparent emergence of great public health concern in south-east Asia. Luckily, at this point, P. knowlesi is completely susceptible to chloroquine treatment and other medications, and so is easily controlled once diagnosed.

One of our contributors, Christina Faust, wrote a blog post last year on P. knowlesi entitled Of Macaques and Men. More information on recent research about P. knowlesi can be found in the article, Monkeys Provide Malaria Reservoir for Human Disease in South-East Asia.

Repeated Malaria Cases, New Guinea

QUESTION

Hello, I live in Papua New Guinea. Myself, my wife and my 2 kids (both under 4 years old), get diagnosed with malaria approximately 3-4 times a year, usually vivax or falciparum. Our GP uses a prick of blood and examines under a microscope. Is it that easy/obvious to diagnose under this method and is it common to get this many attacks in a year? I also fear the affects of taking malaria tabs (eg Fansidar, Primaquin, Artemeter, Amodiaquine) this many times, especially for my young kids. Please help!

ANSWER

In high transmission areas, particularly in rural areas in sub-Saharan Africa, it certainly isn’t unusual for children to get as many a 5 or 6 malaria attacks in a year; adults tend to present with fewer clinical episodes, usually because they were heavily exposed as children and thus developed a significant level of immunity against malaria.

If you and your wife didn’t grow up in a malarial area, then you would not have that acquired immunity, and so you would be expected to get sick almost as often as your young children. Papua New Guinea certainly is a high transmission zone, and I think one thing which might help your family is to focus more on malaria prevention. Since malaria is transmitted by mosquitoes, the best way to avoid getting malaria is to avoid getting bitten by mosquitoes. You should all be sleeping under log-lasting insecticide-treated bednets, which kill and/or repel mosquitoes that try to bite you while you sleep (the mosquitoes that transmit malaria, of the genus Anopheles, are most active at dusk, at night, and at dawn—during the heat of the day they usually don’t feed, but may be found in cooler, heavily shaded areas).

You could also try spraying the walls of your house with a long-lasting insecticide like permethrin, which will also kill adult mosquitoes. Making sure your house is well-screened will also prevent mosquitoes from getting in and biting you at night and in the evenings, and if you are going out during these times, you and your family should wear long-sleeved clothing, and exposed skin should be covered with insect repellent. A DEET-based insect repellent is best, but you may not be comfortable using these regularly on young children, since it can have some potentially dangerous long-term effects, particularly on the liver.

In terms of your other questions, looking at your blood under the microscope is the normal way to diagnose malaria in many places, so it sounds like your GP is doing a good job. There is no indication of adverse effects from taking multiple, repeated doses of anti-malarials, but as I mention above, taking additional preventive measures may further help in reducing your family’s malaria incidence.

One thing you might want to talk to your doctor about is the fact that in some cases, Plasmodium vivax can cause relapses of infection weeks or even months after the initial infection. The reason is that P. vivax can form dormant life stages, which can hide out in the liver, and cannot be killed by the normal anti-malarial treatment. However, there is a medication, called primaquine, which can kill these liver forms, and prevent future relapse. People with a deficiency in a particular enzyme, called G6DP, may not be able to take this medication, as it may cause severe anaemia, so prior to taking the drug you might have to be tested for this deficiency. However, it is definitely something you should talk to your GP about.

Please take a moment to complete our Malaria Survey, as it will help us better understand the effects of malaria medications.

Treatment and Management of Malaria Parasite

QUESTION

What are the treatments and management of malaria?

ANSWER

Treatment is actually part of the strategy for managing malaria, so I will come back to that later. The other main ways in which malaria is controlled is through prevention, diagnosis (followed by treatment if necessary) and education.

1) Prevention:

There are a number of ways to prevent malaria. These can be placed into two categories: medication and vector protection.

For medication, there are drugs you can take to prevent the malaria parasite from developing after someone is bitten by an infected mosquito. These drugs are known as “chemoprophylaxis.”

There are several different kinds, such as doxycycline, mefloquine (marketed as Lariam), atovaquone-proguanil (marketed as Malarone) and chloroquine—the type you use depends on the type of malaria present in the area. For example, in much of Africa and India, malaria is resistant to chloroquine, so this cannot be used as a prophylactic. In parts of Thailand, resistance to mefloquine has emerged. However, if the appropriate type of prophylaxis is used, it is very effective against malaria.

The problem is that these drugs have not been tested for long-term use, can be expensive and may have side-effects. Therefore they are of limited use for people who live in areas where malaria is endemic, and are more appropriate for travelers who are in malarial areas for short amounts of time. However, anti-malarial medication may be used in a very specific way for people at particularly high-risk for malaria, such as pregnant women and young children. In these cases, the high-risk individuals receive a dose or series of doses of malaria medication in order to prevent malaria. This form of prevention is known as intermittent preventive therapy (IPT).

Vector prevention involves protecting oneself against getting bitten by mosquitoes. This can involve wearing long-sleeved clothing in the evenings and at night, when malaria mosquitoes are most active, or wearing insect repellent on exposed skin. Indoor residual spraying, whereby repellent and insecticides are sprayed inside the house, can also be used to bring down the number of mosquitoes.

Another very effective technique for preventing malaria is to sleep under a long-lasting insecticide-treated bednet. The mesh acts as a barrier against the mosquitoes, and the insecticide impregnated in the mesh further repels the mosquitoes and prevents them from biting through the mesh.

2) Diagnosis

Diagnosis is considered a crucial step in controlling malaria, since it ensures that people are receiving correct medication, whether for malaria or for another condition which is causing their symptoms. Currently, the most commonly observed form of diagnosis is through microscopy of thick and thin blood films, which can be stained if necessary. These should be read by a qualified technician to determine both the species of malaria infection and the intensity of parasitaemia (number of parasites in the blood).

More recently, other methods for diagnosis have emerged. These include the use of rapid diagnostic tests (RDTs) which utilize a drop of blood applied to a reagent strip which very quickly reacts to show whether the patient is infected with malaria. While considered generally more sensitive than blood films, some RDTs don’t test for all types of malaria parasite, and many require that the reagents be kept cold in order for the test to be effective, which can be a problem in some developing countries.

Perhaps the most sensitive test for malaria is through PCR, which can theoretically detect a single malaria parasite in a drop of blood, and also determine the species. However, measures of infection intensity require an alternative form of PCR, called real-time PCR, which can be technologically challenging. All forms of PCR require a lot of expensive equipment and reagents, trained technicians and take several hours to run.

3) Treatment

Malaria treatment can be determined based on the diagnostic results, as well as other factors, such as:

  • The area where the infection was acquired and its drug-resistance status
  • The clinical status of the patient
  • Any accompanying illness or condition
  • Pregnancy
  • Drug allergies, or other medications taken by the patient

Most uncomplicated (i.e. not severe) cases of P. falciparum can be treated with oral medication, such as artemisinin-based combination therapies (ACTs). Artemisinin is given in combination with another anti-malarial drug in order to prevent resistance from developing in the parasite. Patients who have complicated (severe) P. falciparum malaria or who cannot take oral medications should be given the treatment by continuous intravenous infusion, with quinine recommended by WHO as the first-line treatment.

Other drugs, which are used in some settings, are considered second-line or alternative forms of treatment. These include:

  • chloroquine (very rarely used for P. falciparum, due to widespread resistance)
  • atovaquone-proguanil (Malarone®)
  • mefloquine (Lariam®)
  • quinine
  • quinidine
  • doxycycline (used in combination with quinine)
  • clindamycin (used in combination with quinine)

In addition, primaquine is active against the dormant parasite liver forms (hypnozoites) and prevents relapses, for patients with P. vivax or P. ovale malaria. Primaquine should not be taken by pregnant women or by people who are deficient in G6PD (glucose-6-phosphate dehydrogenase). Patients should not take primaquine until a screening test has excluded G6PD deficiency.

4) Education

Through education, people living in at-risk areas for malaria transmission can learn about ways to prevent the disease (see above), as well as what to do if they suspect they are infected (i.e. seek diagnosis). Similarly, education is important for travellers visiting malarial areas, so they know the best ways in which to avoid being infected.

Malaria Prevention

QUESTION

What is malaria and the preventive measures?

ANSWER

Malaria is a disease caused by single-celled parasites of the genus Plasmodium. There are currently five species which cause disease in humans, and while each is slightly different, they all act in basically the same way, and cause similar symptoms. Of the five, the most dangerous is Plasmodium falciparum, which can lead to death in a matter of days if not treated promptly.

In terms of prevention, the same basic methods are used to prevent all types of malaria. These can be placed into two categories: medication and vector protection.

For medication, there are drugs you can take to prevent the malaria parasite from developing after someone is bitten by an infected mosquito. These drugs are known as “chemoprophylaxis.”

There are several different kinds, such as doxycycline, mefloquine (marketed as Lariam), atovaquone-proguanil (marketed as Malarone) and chloroquine—the type you use depends on the type of malaria present in the area. For example, in much of Africa and India, malaria is resistant to chloroquine, so this cannot be used as a prophylactic. In parts of Thailand, resistance to mefloquine has emerged. However, if the appropriate type of prophylaxis is used, it is very effective against malaria.

The problem is that these drugs have not been tested for long-term use, can be expensive and may have side-effects. Therefore they are of limited use for people who live in areas where malaria is endemic, and are more appropriate for travelers who are in malarial areas for short amounts of time. However, anti-malarial medication may be used in a very specific way for people at particularly high-risk for malaria, such as pregnant women and young children. In these cases, the high-risk individuals receive a dose or series of doses of malaria medication in order to prevent malaria. This form of prevention is known as intermittent preventive therapy (IPT).

Vector prevention involves protecting oneself against getting bitten by mosquitoes. This can involve wearing long-sleeved clothing in the evenings and at night, when malaria mosquitoes are most active, or wearing insect repellent on exposed skin. Indoor residual spraying, whereby repellent and insecticides are sprayed inside the house, can also be used to bring down the number of mosquitoes.

Another very effective technique for preventing malaria is to sleep under a long-lasting insecticide-treated bednet. The mesh acts as a barrier against the mosquitoes, and the insecticide impregnated in the mesh further repels the mosquitoes and prevents them from biting through the mesh.

Comparison of Molecular Tests for the Diagnosis of Malaria in Honduras

Honduras is a tropical country with more than 70% of its population living at risk of being infected with either Plasmodium vivax or Plasmodium falciparum. Laboratory diagnosis is a very important factor for adequate treatment and management of malaria. In Honduras, malaria is diagnosed by both, microscopy and rapid diagnostic tests and to date, no molecular methods have been implemented for routine diagnosis. However, since mixed infections, and asymptomatic and low-parasitaemic cases are difficult to detect by light microscopy alone, identifying appropriate molecular tools for diagnostic applications in Honduras deserves further study. The present study investigated the utility of different molecular tests for the diagnosis of malaria in Honduras. [Read more…]

Malaria Prophylaxis in Ghana, Africa

QUESTION

My husband will be traveling to Ghana soon. We have Mefloquine and Primaquine. Which one do you think is best for prophylaxis in Ghana? He also has Fansidar, but we understand it’s best not to use this for prophylaxis. Thank you for your help!

ANSWER

There are positives and negatives associated with both of these medications. Mefloquine is recommended for travelers in Ghana (whereas the Centers for Disease Control does not explicitly recommend primaquine for this area, since primaquine is particularly effective against Plasmodium vivax malaria, which is almost completely absent from West Africa), and only has to be taken once a week (primaquine must be taken daily).

A disadvantage with mefloquine is that you must start taking it 2 weeks before your trip, whereas primaquine can be started as little as 1-2 days before travel; mefloquine is also not recommended for people with a history of psychiatric or mental problems, as it can cause severe side effects. Even healthy individuals often report disturbing dreams or increased agression/anxiety while taking mefloquine. However, one major disadvantage to primaquine is that you must be tested for G6DP deficiency prior to taking it – your husband may have already done this, prior to being prescribed the drug. People with G6DP deficiency should not take primaquine.

Overall, the decision comes down to personal preference, though from a disease perspective, mefloquine would probably be the better choice for travel to Ghana, given the higher prevalence of P. falciparum malaria in this region, as opposed to P. vivax. Other options to consider would be atovaquone-proguanil (Malarone – expensive, taken daily, but very effective and very well tolerated by most people, with very low side effects) or doxycycline (very cheap, taken daily, is an antibiotic so can prevent some other infections but often results in sun sensitivity, which can be a problem in the tropics). Both of these can be started 1-2 days before arriving in the malarial area.

After you come back, I would be very grateful if you could take our malaria medication side effects survey, as we are very interested in hearing from our readers what their experiences with malaria prophylaxis and treatment have been.

As American as…Plasmodium vivax?

While its evolutionary history is disputed, there’s no doubt malaria was a key factor in the history of the Americas

I am in the midst of a fascinating book about the way the world changed after Columbus “discovered” America in 14921. Called, appropriately, 1493: Uncovering the World Columbus Created, it is author Charles C. Mann’s follow-up to an earlier, equally engaging book on pre-Colombian America (no prizes for guessing the title, which is 1491: New Revelations of the Americas Before Columbus2).

In both works, Mann devotes significant attention to the role that disease played in re-shaping the Americas in the immediate aftermath of European arrival. However, it is only in 1493 that he turns to malaria, and here he presents several startling examples of how malaria may have influenced key events in the history of the Americas, with subsequent knock-on effects on Europe as well. It is worth noting early on that Mann is very open about the uncertainty in his theories – not only were many other factors clearly involved, but malaria never acted alone, and was commonly accompanied by other introduced diseases, such as yellow fever. Yet even with these disclaimers, Mann’s stories are thought-provoking and illuminating.

For example, he describes how malaria contributed to the establishment of the enormously successful and unarguably brutal slave plantations of the American South. In its early years, the colony of Carolina was a net exporter of slaves, as captured Indians (Mann’s terminology) were sent elsewhere in colonies as forced labour. Additional work in the fields was provided by indentured servants, who were contracted for set periods of time; at first, slaves from Africa were relatively rare.

Anopheles quadrimaculatus Florida

Mosquitoes which were capable of transmitting malaria, such as this Anopheles quadrimaculatus, were already present in the Americas when Europeans and Africans arrived, carrying different forms of malaria. Photo courtesy of smccann on Flickr (http://www.flickr.com/photos/deadmike/)

This all changed as European and African diseases intermingled and became established in the New World; new agricultural practices, also imported by the Europeans, created habitats favourable for a native mosquito species which was able to transmit both Plasmodium vivax and Plasmodium falciparum malaria. Mann attributes the introduction of the former to Europeans, as P. vivax tolerates relatively low temperatures and was rife throughout southern England during the 1600s; P. falciparum was likely brought by African slaves.

Since, according to Mann, no human malaria had been present in the Americas prior to Columbus’ arrival, native Indian people were highly susceptible to these diseases, and either died or were incapacitated and unable to work while infected. Similarly, while some of the contracted servants brought from Europe may have been exposed to P. vivax in their home regions, and thus had some measure of acquired immunity, they fell like flies before the highly pathogenic P. falciparum species.

Africans, conversely, were exposed to P. falciparum as children in Africa and if they survived, were awarded a level of protection. Moreover, a high proportion of people from West and Central Africa possess one or more of a group of genetic mutations, the best-known of which is the Duffy negative phenotype, which makes the carrier almost completely resistant to P. vivax malaria.

As a result, in the newly-malarial fields and marshlands of what is now the American south, plantation owners rapidly ran out of native Indian slaves and indentured European labourers became financially unviable. The solution? Bring in a group of people resistant to the diseases decimating your other workers. And thus, in part, was borne the horrifying trans-Atlantic slave trade, bringing malaria-resistant West and Central Africans to live and die on the plantations in the American South, in a divided society that would persist for over three centuries.

Another quick example: Mann describes how malaria, in part, was responsible for the formation of Great Britain as a nation in the early 18th century. It turns out that in the late 1600s, Scotland, not wanting to miss out on the spoils of colonization, decided to establish a trading post in Panama. As with the plantations of the north, Mann explains that malaria (along with yellow fever) was brought to the isthmus of Central America by Europeans and Africans post-Colombus. Ravaged by disease, and unable to trade with any local tribes (presumably they too had been decimated by imported infections), the first Scottish colony was an abject failure. So, too, was a relief expedition a few years later. Both had been “joint-stakes” ventures, whereby thousands of merchants had contributed a small investment, with a hope of rich returns. Unfortunately, all of these investors lost everything. England had for a century shared a monarch with her neighbour to the north but was consistently denied full union by Scots understandably wary of domination by the larger country. Now, her leaders saw an opening. The English offered to repay the lost funds of all those who had invested in the ill-fated Panama scheme; in return, all they asked for was unification. In the end, England got her wish, and the Union Act of 1707 combined the two countries into the modern nation of Great Britain, a move, perhaps, that was partially defined by malaria.

While these are without doubt beautifully written and captivating tales of dramatic changes occurring throughout the first few centuries post-Columbus, particularly the idea of African slaves being brought in to replace Indian workers relies heavily on the supposition that Plasmodium vivax was introduced to the Americas by Europeans in the late 16th and early 17th centuries. Unfortunately, this is not strictly true.

Modern analysis of the origins of malaria usually relies on genetic evidence – that is, comparison between sequences of DNA between malaria from different regions and even different species, which can give clues as to how the parasite has changed and evolved over time. However, genetic traces of the path of malaria can also be uncovered from looking at malaria’s hosts, including human populations. For example, the Duffy negative group of mutations, mentioned earlier, provides almost or even complete protection against P. vivax. Given the high prevalence of these mutations in West and Central African populations (95-99% in some places!), some scientists have considered this evidence that P. vivax has co-evolved with humans in these regions for thousands of years, and that therefore the parasite might have evolved here3.

However, more recently, this suggestion has been refuted by looking at genetic patterns present within different strains of the Plasmodium vivax parasite itself, and comparing it to other species of malaria throughout the world. It turns out that genetically, P. vivax is actually very closely related to a group of malaria species that infect macaque monkeys in south-east Asia4,5. Estimates of the age of different strains of P. vivax also places the most ancient lineages in Asia, consistent with an “out of Asia” hypothesis. While this view has now approached consensus in the literature, the scientific jury is still out to explain the high occurrence of Duffy negative populations in Africa.

howler monkey

South American monkeys, such as this howler, are infected with forms of malaria which are closely related to that which infects humans. This has been used as evidence to show that Plasmodium vivax arrived in the Americas prior to Europeans in the 15th century. Photo courtesy of Rainbirder on Flickr (http://www.flickr.com/photos/rainbirder/)

Similar molecular tools have also been used to try to figure out when Plasmodium vivax first reached the Americas. In this, scientists have been assisted by the discovery of a species of malaria that infects monkeys, called P. simium. Genetically very similar to P. vivax, scientists have dated its evolutionary origins to show that P. vivax probably first entered the Americas via Melanesia and the Pacific several thousand years ago5. After this time, it managed to switch hosts into monkeys, producing modern variants of P. simium over time. As such, some native Indian populations may have encountered P. vivax long before Europeans ever arrived. However, what is also clear from analysis of modern P. vivax strains that are present in the Americas is that they are largely of European origins. It may even have been that native populations of pre-Columbian America found ways to manage P. vivax, perhaps through controlling its mosquito vector, thus reducing the parasite’s impact. Once Europeans arrived, however, not only were Indians unable to continue managing the land as they had done for generations, but they were suddenly faced with a huge new influx of P. vivax, and of strains they had not yet encountered3.

As such, having thus dashed a drop of water on Charles C. Mann’s parade, I concede that Europeans probably were responsible for the bulk of P. vivax in the early years of the Columbian Exchange, and particularly in the south-eastern United States where he argues it had such a big impact on the nascent trade in African slaves. Moreover, P. falciparum, by far the more deadly of malaria species, was also clearly introduced by these forced labourers from Africa, leading to greater mortality and perhaps, ironically, an even greater dependence on more African slaves. While perhaps hardly a game-changing disease like malaria, Mann might also be interested to learn that another wide-spread parasitic disease, intestinal schistosomiasis, was also likely transported to the Americas by the slave trade, and still remains a public health threat in parts of Latin America today.

In our highly globalized world, we are well aware of the risks of transporting diseases between continents and societies. However, as the theories regarding the origin of malaria in the Americas show, humans (and other animals) have in fact been disseminating disease-causing organisms to new places since the very dawn of our evolutionary history. In fact, Mann argues, very successfully, that while we attribute globalization to 20th century, transport and communications technology, we should instead look half a millennium back, and appreciate how the conquest of the Americas created the first global trade network spanning the Pacific, Atlantic and Indian Oceans, and therefore sowed the seeds of our own modern inter-connected age. And, within those early origins of globalization, even diseases themselves, such as malaria, may have played a role in shaping history.

 

Cited literature

1. Mann, CC (2005) 1491: New Revelations of the Americas Before Columbus. Knopf: New York, 480 pp.

2. Mann, CC (2011) 1493: Uncovering the New World Columbus Created. Knopf: New York, 560 pp.

3. Carter, R (2003) Speculations on the origins of Plasmodium vivax malaria, TRENDS in Parasitology, 19 (5): 214-219.

4. Escalante AA et al. (2005) A monkey’s tale: The origin of Plasmodium vivax as a human malaria parasite, PNAS, 102 (6): 1980-1985.

5. Cornejo OE & Escalante AA (2006) The origin and age of Plasmodium vivax, TRENDS in Parasitology, 22 (12): 558-563.