Why not create a vaccine for malaria?

QUESTION

Why not create a vaccine for malaria?

ANSWER

There are many teams of scientists working hard to try to produce a malaria vaccine. In fact, only last year, the preliminary results of a vaccine trial were published. The vaccine, called RTS,S, has been produced by GlaxoSmithKline and is in the midst of Phase III trials in Africa.

The preliminary results showed approximately a 50% reduction in malaria incidence, though it is not clear how much of that protection came from the vaccine and how much should be attributed to the vaccine adjunct (a compound given with the vaccine to boost immune responses). The preliminary results also did not include analysis of how much the vaccine prevented mortality due to malaria, and levels of protection against severe malaria appeared to be low.

However, we will have to wait until 2014 for the full and final results of the clinical trial to be made available. In the meantime, other vaccine candidates are being developed, but there are many challenges to overcome. For example, there are five different types of malaria that infect people: these differ significantly in the way they develop in the human host, and so a vaccine appropriate for one may not be effective against the others.

Most vaccine researchers are focusing on Plasmodium falciparum, the most deadly form of malaria, and a vaccine effective against this parasite would certainly do the most to reduce malaria-related mortality. However, Plasmodium vivax also causes high morbidity, particularly in Asia and the Pacific, and so should not be overlooked. Moreover, within each of these species exist different strains in different areas, each of which can be markedly different from a genetic perspective.

Finally, we do not yet fully understand the complex ways in which our immune system reacts to malaria. As such, this presents a challenge to developing an effective malaria vaccine, though many scientists are willing to address this challenge and have made big inroads in the search for a safe, effective vaccine.

Another stumbling block has been inadequate financial commitment; increased resources devoted towards vaccine development would help overcome the scientific and technical obstacles in our way. PATH, coordinating the Malaria Vaccine Initiative, mentions for example that it can cost up to half a billion dollars ($500,000,000!) to fund a vaccine through the full process of development, testing and clinical trials through to licensing.

Malaria Vaccine Research

QUESTION

Is there any research to produce anti malaria vaccine, if not, why?

ANSWER

There are many teams of scientists working hard to try to produce a malaria vaccine. In fact, only last year, the preliminary results of a vaccine trial were published. The vaccine, called RTS,S, has been produced by GlaxoSmithKline and is in the midst of Phase III trials in Africa. The preliminary results showed approximately a 50% reduction in malaria incidence, though it is not clear how much of that protection came from the vaccine and how much should be attributed to the vaccine adjunct (a compound given with the vaccine to boost immune responses).

The preliminary results also did not include analysis of how much the vaccine prevented mortality due to malaria, and levels of protection against severe malaria appeared to be low. However, we will have to wait until 2014 for the full and final results of the clinical trial to be made available. In the meantime, other vaccine candidates are being developed, but there are many challenges to overcome.

For example, there are five different types of malaria that infect people: these differ significantly in the way they develop in the human host, and so a vaccine appropriate for one may not be effective against the others. Most vaccine researchers are focusing on Plasmodium falciparum, the most deadly form of malaria, and a vaccine effective against this parasite would certainly do the most to reduce malaria-related mortality. However, Plasmodium vivax also causes high morbidity, particularly in Asia and the Pacific, and so should not be overlooked.

Moreover, within each of these species exist different strains in different areas, each of which can be markedly different from a genetic perspective. Finally, we do not yet fully understand the complex ways in which our immune system reacts to malaria. As such, this presents a challenge to developing an effective malaria vaccine, though many scientists are willing to address this challenge and have made big inroads in the search for a safe, effective vaccine. For more information on current efforts to develop a malaria vaccine, please see PATH’s Malaria Vaccine Initiative.

RTS,S Malaria Vaccine

QUESTION:

What information can you provide on this vaccine candidate?

ANSWER:

RTS,S is a vaccine candidate against Plasmodium falciparum malaria which works by encouraging the host’s body to produce antibodies and T cells which diminish the malaria parasite’s ability to survive and reproduce in the liver.

Produced by GlaxoSmithKline, RTS,S is the first vaccine candidate against Plasmodium falciparum that has reached advanced (Phase III) clinical field trials on a large scale. It was developed way back in 1987, and had successive trials in the United States in 1992 and then in Africa in 1998. In 2001, GSK and the Malaria Vaccine Initiative at PATH went into a public-private partnership, with grant money from the Bill and Melinda Gates Foundation, to develop the vaccine for use in children and infants in sub-Saharan Africa.

The Phase III trials are currently underway in a number of African countries; if all goes to plan, the vaccine will be submitted for regulation by drug authorities as early as 2012. This information, and more, can be found courtesy of the Malaria Vaccine Initiative website: http://www.malariavaccine.org/index.php.