Malaria or Kidney Infection?

QUESTION

Two months ago my daughter was in Uganda working and when came back to the States she was hospitalized for 4 days with Malaria symptoms. Her tests came back negative they really didn’t act like they knew how to treat this. They kept telling her they didn’t know how to diagnosis Malaria. So they treated her for it. She now after 2 months is once again hospitalized with the same symptoms. They are telling her they think it is a kidney infection. Can malaria be misdiagnosed as a kidney infection. She once again has all the symptoms as malaria?

ANSWER

What tests did the doctors do to try to diagnose malaria in your daughter when she first got back to the States? Usually, malaria is diagnosed by a blood test, whereby a trained technician will look at the patient’s blood under a microscope. The technician looks for signs of the malaria parasite in the patient’s blood, and if seen, can determine the intensity of the infection as well as the species of malaria. This is important information for accurate treatment. Alternatively, rapid diagnostic tests, which utilize a droplet of blood in a device which looks similar to a pregnancy test, and can very quickly determine whether someone is infected with malaria. It is important to know that malaria cannot be diagnosed by looking at standard blood parameters. If you don’t think your doctors know what is afflicting your daughter, you should take her to a clinic which specializes in tropical or travel medicine. There, they will certainly know how to effectively diagnose your daughter.

Given that your daughter experienced a resurgence of symptoms two months after returning, if she did have malaria, then there are two kinds which she might have: Plasmodium ovale and Plasmodium vivax. The other types of malaria, including the most deadly kind, P. falciparum, are not able to come back and relapse once they are treated. However, in order to prevent future relapses, your daughter may also have to be treated with another form of medication called primaquine. I will emphasize again, however, that it is crucial to gain an accurate diagnosis before taking any form of treatment for malaria.

How is Malaria Prevented?

QUESTION

What are the methods to prevent malaria?

ANSWER

Malaria prevention consists of a combination of mosquito avoidance measures and chemoprophylaxis. Although very efficacious, none of the recommended interventions are 100% effective.

Mosquito Avoidance Measures

  • Because of the nocturnal feeding habits of Anopheles mosquitoes, malaria transmission occurs primarily between dusk and dawn.
  • Contact with mosquitoes can be reduced by remaining in well-screened areas, using mosquito bed nets (preferably insecticide-treated nets), using a pyrethroid-containing flying-insect spray in living and sleeping areas during evening and nighttime hours, and wearing clothes that cover most of the body.
  • All travelers should use an effective mosquito repellent.
  • The most effective repellent against a wide range of vectors is DEET (N,N-diethylmetatoluamide), an ingredient in many commercially available insect repellents. The actual concentration of DEET varies widely among repellents. DEET formulations as high as 50% are recommended for both adults and children older than 2 months of age (see the Protection Against Mosquitoes, Ticks, and Other Insects and Arthropods section later in this chapter). DEET should be applied to the exposed parts of the skin when mosquitoes are likely to be present.
  • In addition to using a topical insect repellent, a permethrin-containing product may be applied to bed nets and clothing for additional protection against mosquitoes.

Chemoprophylaxis

  • All currently recommended primary chemoprophylaxis regimens involve taking a medicine before travel, during travel, and for a period of time after leaving the malaria endemic area. Beginning the drug before travel allows the antimalarial agent to be in the blood before the traveler is exposed to malaria parasites.
  • Presumptive antirelapse therapy (also known as terminal prophylaxis) uses a medication towards the end of the exposure period (or immediately thereafter) to prevent relapses or delayed-onset clinical presentations of malaria caused by hypnozoites (dormant liver stages) of P. vivax or P. ovale. Because most malarious areas of the world (except the Caribbean) have at least one species of relapsing malaria, travelers to these areas have some risk for acquiring either P. vivax or P. ovale, although the actual risk for an individual traveler is difficult to define. Presumptive anti-relapse therapy is generally indicated only for persons who have had prolonged exposure in malaria-endemic areas (e.g., missionaries, volunteers).
  • In choosing an appropriate chemoprophylactic regimen before travel, the traveler and the health-care provider should consider several factors. The travel itinerary should be reviewed in detail and compared with the information on where malaria transmission occurs within a given country (see the Malaria Risk Information and Prophylaxis, by Country, section later in this chapter) to determine whether the traveler will actually be traveling in a part of the country where malaria occurs and if significant antimalarial drug resistance has been reported in that location.
  • The resistance of P. falciparum to chloroquine has been confirmed in all areas with P. falciparum malaria except the Caribbean, Central America west of the Panama Canal, and some countries in the Middle East. In addition, resistance to sulfadoxine–pyrimethamine (e.g., Fansidar) is widespread in the Amazon River Basin area of South America, much of Southeast Asia, other parts of Asia, and in large parts of Africa. Resistance to mefloquine has been confirmed on the borders of Thailand with Burma (Myanmar) and Cambodia, in the western provinces of Cambodia, in the eastern states of Burma (Myanmar), on the border between Burma and China, along the borders of Laos and Burma, and the adjacent parts of the Thailand–Cambodia border, as well as in southern Vietnam.
  • Additional factors to consider are the patient’s other medical conditions, medications being taken (to assess potential drug–drug interactions), the cost of the medicines, and the potential side effects.
      The medications recommended for chemoprophylaxis of malaria may also be available at overseas destinations. However, combinations of these medications and additional drugs that are not recommended may be commonly prescribed and used in other countries. Travelers should be strongly discouraged from obtaining chemoprophylactic medications while abroad. The quality of these products is not known, and they may not be protective and may be dangerous. These medications may have been produced by substandard manufacturing practices, may be counterfeit, or may contain contaminants. Additional information on this topic can be found in an FDA document

Purchasing Medications Outside the United States

    .

 

Malaria or Not?

QUESTION

I went to Luanda, Angola and Port Hartcourt, Nigeria, Onne, Nigeria and Warri, Nigeria a few times. I suffer with voice problems, muscle control on my right side and some joint pains that have not been explained by my doctors.

I have been to doctors in Houston, Tx., New Orleans, La., New Iberia, La. and Franklin, La. and they all say the same thing. They don’t know what’s wrong with me. It maybe malaria that has laid dormant for nearly three years. I need to find out who can diagnose this for me and get me some help. My symptoms go back to 2009 with the balance being the first problem I noticed. The loss of my voice came later. I took off work for 5 months. Help me find someone close that might be able to help.

ANSWER

Although joint pains are associated sometimes with malaria infection, the most common symptoms are high fevers and chills—it would be unusual to suffer problems of with balance, the voice or muscle spasms.

A blood test is the only way to test for malaria for sure—this may be possible at a local travel clinic or any hospital which has a tropical medicine specialist.

I am not sure of any such exact clinics/hospitals in your area. However, I believe the CDC website has a list of local resources for tropical medicine. Otherwise, the CDC itself is located in Atlanta, GA, and they are certainly able to perform malaria testing, as well as give you advice as to whether you might be suffering from some other disease acquired internationally.

Treatment and Management of Malaria Parasite

QUESTION

What are the treatments and management of malaria?

ANSWER

Treatment is actually part of the strategy for managing malaria, so I will come back to that later. The other main ways in which malaria is controlled is through prevention, diagnosis (followed by treatment if necessary) and education.

1) Prevention:

There are a number of ways to prevent malaria. These can be placed into two categories: medication and vector protection.

For medication, there are drugs you can take to prevent the malaria parasite from developing after someone is bitten by an infected mosquito. These drugs are known as “chemoprophylaxis.”

There are several different kinds, such as doxycycline, mefloquine (marketed as Lariam), atovaquone-proguanil (marketed as Malarone) and chloroquine—the type you use depends on the type of malaria present in the area. For example, in much of Africa and India, malaria is resistant to chloroquine, so this cannot be used as a prophylactic. In parts of Thailand, resistance to mefloquine has emerged. However, if the appropriate type of prophylaxis is used, it is very effective against malaria.

The problem is that these drugs have not been tested for long-term use, can be expensive and may have side-effects. Therefore they are of limited use for people who live in areas where malaria is endemic, and are more appropriate for travelers who are in malarial areas for short amounts of time. However, anti-malarial medication may be used in a very specific way for people at particularly high-risk for malaria, such as pregnant women and young children. In these cases, the high-risk individuals receive a dose or series of doses of malaria medication in order to prevent malaria. This form of prevention is known as intermittent preventive therapy (IPT).

Vector prevention involves protecting oneself against getting bitten by mosquitoes. This can involve wearing long-sleeved clothing in the evenings and at night, when malaria mosquitoes are most active, or wearing insect repellent on exposed skin. Indoor residual spraying, whereby repellent and insecticides are sprayed inside the house, can also be used to bring down the number of mosquitoes.

Another very effective technique for preventing malaria is to sleep under a long-lasting insecticide-treated bednet. The mesh acts as a barrier against the mosquitoes, and the insecticide impregnated in the mesh further repels the mosquitoes and prevents them from biting through the mesh.

2) Diagnosis

Diagnosis is considered a crucial step in controlling malaria, since it ensures that people are receiving correct medication, whether for malaria or for another condition which is causing their symptoms. Currently, the most commonly observed form of diagnosis is through microscopy of thick and thin blood films, which can be stained if necessary. These should be read by a qualified technician to determine both the species of malaria infection and the intensity of parasitaemia (number of parasites in the blood).

More recently, other methods for diagnosis have emerged. These include the use of rapid diagnostic tests (RDTs) which utilize a drop of blood applied to a reagent strip which very quickly reacts to show whether the patient is infected with malaria. While considered generally more sensitive than blood films, some RDTs don’t test for all types of malaria parasite, and many require that the reagents be kept cold in order for the test to be effective, which can be a problem in some developing countries.

Perhaps the most sensitive test for malaria is through PCR, which can theoretically detect a single malaria parasite in a drop of blood, and also determine the species. However, measures of infection intensity require an alternative form of PCR, called real-time PCR, which can be technologically challenging. All forms of PCR require a lot of expensive equipment and reagents, trained technicians and take several hours to run.

3) Treatment

Malaria treatment can be determined based on the diagnostic results, as well as other factors, such as:

  • The area where the infection was acquired and its drug-resistance status
  • The clinical status of the patient
  • Any accompanying illness or condition
  • Pregnancy
  • Drug allergies, or other medications taken by the patient

Most uncomplicated (i.e. not severe) cases of P. falciparum can be treated with oral medication, such as artemisinin-based combination therapies (ACTs). Artemisinin is given in combination with another anti-malarial drug in order to prevent resistance from developing in the parasite. Patients who have complicated (severe) P. falciparum malaria or who cannot take oral medications should be given the treatment by continuous intravenous infusion, with quinine recommended by WHO as the first-line treatment.

Other drugs, which are used in some settings, are considered second-line or alternative forms of treatment. These include:

  • chloroquine (very rarely used for P. falciparum, due to widespread resistance)
  • atovaquone-proguanil (Malarone®)
  • mefloquine (Lariam®)
  • quinine
  • quinidine
  • doxycycline (used in combination with quinine)
  • clindamycin (used in combination with quinine)

In addition, primaquine is active against the dormant parasite liver forms (hypnozoites) and prevents relapses, for patients with P. vivax or P. ovale malaria. Primaquine should not be taken by pregnant women or by people who are deficient in G6PD (glucose-6-phosphate dehydrogenase). Patients should not take primaquine until a screening test has excluded G6PD deficiency.

4) Education

Through education, people living in at-risk areas for malaria transmission can learn about ways to prevent the disease (see above), as well as what to do if they suspect they are infected (i.e. seek diagnosis). Similarly, education is important for travellers visiting malarial areas, so they know the best ways in which to avoid being infected.

Malaria Prevention

QUESTION

What is malaria and the preventive measures?

ANSWER

Malaria is a disease caused by single-celled parasites of the genus Plasmodium. There are currently five species which cause disease in humans, and while each is slightly different, they all act in basically the same way, and cause similar symptoms. Of the five, the most dangerous is Plasmodium falciparum, which can lead to death in a matter of days if not treated promptly.

In terms of prevention, the same basic methods are used to prevent all types of malaria. These can be placed into two categories: medication and vector protection.

For medication, there are drugs you can take to prevent the malaria parasite from developing after someone is bitten by an infected mosquito. These drugs are known as “chemoprophylaxis.”

There are several different kinds, such as doxycycline, mefloquine (marketed as Lariam), atovaquone-proguanil (marketed as Malarone) and chloroquine—the type you use depends on the type of malaria present in the area. For example, in much of Africa and India, malaria is resistant to chloroquine, so this cannot be used as a prophylactic. In parts of Thailand, resistance to mefloquine has emerged. However, if the appropriate type of prophylaxis is used, it is very effective against malaria.

The problem is that these drugs have not been tested for long-term use, can be expensive and may have side-effects. Therefore they are of limited use for people who live in areas where malaria is endemic, and are more appropriate for travelers who are in malarial areas for short amounts of time. However, anti-malarial medication may be used in a very specific way for people at particularly high-risk for malaria, such as pregnant women and young children. In these cases, the high-risk individuals receive a dose or series of doses of malaria medication in order to prevent malaria. This form of prevention is known as intermittent preventive therapy (IPT).

Vector prevention involves protecting oneself against getting bitten by mosquitoes. This can involve wearing long-sleeved clothing in the evenings and at night, when malaria mosquitoes are most active, or wearing insect repellent on exposed skin. Indoor residual spraying, whereby repellent and insecticides are sprayed inside the house, can also be used to bring down the number of mosquitoes.

Another very effective technique for preventing malaria is to sleep under a long-lasting insecticide-treated bednet. The mesh acts as a barrier against the mosquitoes, and the insecticide impregnated in the mesh further repels the mosquitoes and prevents them from biting through the mesh.

Malaria Prophylaxis in Ghana, Africa

QUESTION

My husband will be traveling to Ghana soon. We have Mefloquine and Primaquine. Which one do you think is best for prophylaxis in Ghana? He also has Fansidar, but we understand it’s best not to use this for prophylaxis. Thank you for your help!

ANSWER

There are positives and negatives associated with both of these medications. Mefloquine is recommended for travelers in Ghana (whereas the Centers for Disease Control does not explicitly recommend primaquine for this area, since primaquine is particularly effective against Plasmodium vivax malaria, which is almost completely absent from West Africa), and only has to be taken once a week (primaquine must be taken daily).

A disadvantage with mefloquine is that you must start taking it 2 weeks before your trip, whereas primaquine can be started as little as 1-2 days before travel; mefloquine is also not recommended for people with a history of psychiatric or mental problems, as it can cause severe side effects. Even healthy individuals often report disturbing dreams or increased agression/anxiety while taking mefloquine. However, one major disadvantage to primaquine is that you must be tested for G6DP deficiency prior to taking it – your husband may have already done this, prior to being prescribed the drug. People with G6DP deficiency should not take primaquine.

Overall, the decision comes down to personal preference, though from a disease perspective, mefloquine would probably be the better choice for travel to Ghana, given the higher prevalence of P. falciparum malaria in this region, as opposed to P. vivax. Other options to consider would be atovaquone-proguanil (Malarone – expensive, taken daily, but very effective and very well tolerated by most people, with very low side effects) or doxycycline (very cheap, taken daily, is an antibiotic so can prevent some other infections but often results in sun sensitivity, which can be a problem in the tropics). Both of these can be started 1-2 days before arriving in the malarial area.

After you come back, I would be very grateful if you could take our malaria medication side effects survey, as we are very interested in hearing from our readers what their experiences with malaria prophylaxis and treatment have been.

Malaria Prevention

QUESTION

What are the ways in which you can prevent yourself from being infected with malaria?

ANSWER

Malaria prevention consists of a combination of mosquito avoidance measures (since malaria is transmitted by infected mosquitoes) and chemoprophylaxis (medication to prevent the establishment of malaria in your body, if you do get bitten). Although very efficacious, none of the recommended interventions are 100% effective.

Mosquito Avoidance Measures

  • Because of the nocturnal feeding habits of Anopheles mosquitoes, malaria transmission occurs primarily between dusk and dawn.
  • Contact with mosquitoes can be reduced by remaining in well-screened areas, using mosquito bed nets (preferably insecticide-treated nets), using a pyrethroid-containing flying-insect spray in living and sleeping areas during evening and nighttime hours, and wearing clothes that cover most of the body.
  • All travelers should use an effective mosquito repellent.
  • The most effective repellent against a wide range of vectors is DEET (N,N-diethylmetatoluamide), an ingredient in many commercially available insect repellents. The actual concentration of DEET varies widely among repellents. DEET formulations as high as 50% are recommended for both adults and children older than 2 months of age (see the Protection Against Mosquitoes, Ticks, and Other Insects and Arthropods section later in this chapter). DEET should be applied to the exposed parts of the skin when mosquitoes are likely to be present.
  • In addition to using a topical insect repellent, a permethrin-containing product may be applied to bed nets and clothing for additional protection against mosquitoes.

Chemoprophylaxis

      • All currently recommended primary chemoprophylaxis regimens involve taking a medicine before travel, during travel, and for a period of time after leaving the malaria endemic area. Beginning the drug before travel allows the antimalarial agent to be in the blood before the traveler is exposed to malaria parasites.
      • Presumptive antirelapse therapy (also known as terminal prophylaxis) uses a medication towards the end of the exposure period (or immediately thereafter) to prevent relapses or delayed-onset clinical presentations of malaria caused by hypnozoites (dormant liver stages) of P. vivax or P. ovale. Because most malarious areas of the world (except the Caribbean) have at least one species of relapsing malaria, travelers to these areas have some risk for acquiring either P. vivax or P. ovale, although the actual risk for an individual traveler is difficult to define. Presumptive anti-relapse therapy is generally indicated only for persons who have had prolonged exposure in malaria-endemic areas (e.g., missionaries, volunteers).
      • In choosing an appropriate chemoprophylactic regimen before travel, the traveler and the health-care provider should consider several factors. The travel itinerary should be reviewed in detail and compared with the information on where malaria transmission occurs within a given country to determine whether the traveler will actually be traveling in a part of the country where malaria occurs and if significant antimalarial drug resistance has been reported in that location.
      • The resistance of P. falciparum to chloroquine has been confirmed in all areas with P. falciparum malaria except the Caribbean, Central America west of the Panama Canal, and some countries in the Middle East. In addition, resistance to sulfadoxine–pyrimethamine (e.g., Fansidar) is widespread in the Amazon River Basin area of South America, much of Southeast Asia, other parts of Asia, and in large parts of Africa. Resistance to mefloquine has been confirmed on the borders of Thailand with Burma (Myanmar) and Cambodia, in the western provinces of Cambodia, in the eastern states of Burma (Myanmar), on the border between Burma and China, along the borders of Laos and Burma, and the adjacent parts of the Thailand–Cambodia border, as well as in southern Vietnam.
      • Additional factors to consider are the patient’s other medical conditions, medications being taken (to assess potential drug–drug interactions), the cost of the medicines, and the potential side effects.

The medications recommended for chemoprophylaxis of malaria may also be available at overseas destinations. However, combinations of these medications and additional drugs that are not recommended may be commonly prescribed and used in other countries. Travelers should be strongly discouraged from obtaining chemoprophylactic medications while abroad. The quality of these products is not known, and they may not be protective and may be dangerous. These medications may have been produced by substandard manufacturing practices, may be counterfeit, or may contain contaminants. Additional information on this topic can be found in an FDA document

Purchasing Medications Outside the United States.

Malaria in Thailand: Phrae and Nan

QUESTION

We are traveling in Phrae and Nan (in Thailand) in the period of December-Januar. Is there any risk for malaria. We are travelling with kids (9 months, 6 and 8 year) and want to avoid risky areas. Can we travel safely in that region? Thank you for your reply.

ANSWER

Thanks for your question. Phrae and Nan are two districts in northern Thailand—the latter shares a border with Laos. While most of the very touristy destinations in Thailand (i.e. Bangkok and the coastal regions) are considered to have very low levels of malaria, and perhaps no transmission at all, I’m afraid that the areas bordering Laos, Myanmar and Cambodia do have malaria and so if you visit, you should take appropriate preventative precautions.

It is worth noting that some parts of Thailand are known to have mefloquine (sold as Lariam) and chloroquine resistant strains of malaria, although I have just looked it up and it doesn’t appear that Phrae and Nan are within these regions. However, it would still be worth seeing a physician or visiting a travel clinic to get specific advice for your family, and particularly what anti-malarials are appropriate for your children—a lot of that will depend on personal preference, such as how frequently you are comfortable taking medication and also how much you are prepared to spend.

Some, such as Lariam, are also frequently associated with side effects, which may affect your decision. If you do take anti-malarials on your trip, please take the Malaria Medication Side-effects Survey: Treatment and Prophylaxis. We are trying to collect information from travellers to record people’s experiences with the different types available.

In addition to preventative anti-malaria medication (known as prophylaxis), there are other preventative measures you can take, such as sleeping under a long-lasting insecticide-treated bednet, wearing long-sleeved clothing (especially in the evenings and at night when malarial mosquitoes tend to bite) and using insect-repellent on any exposed skin. You can also spray clothing with permethrin, a chemical which repels insects and prevents them from biting through thin cloth.

Medicines to Prevent Malaria?

QUESTION

Which medicines are used to prevent malaria?

ANSWER

There are a number of drugs used to prevent malaria infection, known as malaria prophylactic medication. These vary in terms of how they are taken, how long they are taken for, how much they cost and the typical side effects people experience while they are taking them. In addition, some are recommended more highly for certain types of malaria or certain regions of the world, due primarily to the emergence of resistance in certain areas.

The most common forms of malaria prophylaxis used are doxycycline, atovaquone/proguanil (sold under the brand name Malarone), chloroquine (sold as Aralen) and mefloquine (sold as Lariam). More information on these, on other types of prophylaxis and malaria prevention in general can be found on our Malaria Prevention page.